2019. július 9., kedd

DC SSR 1.

Ezzel a cik(ek)kel már régen tartozom magamnak.
Különböző fórumokon rendszeresen feltűnik, a "milyen DC SSR-t" vegyek kérdés, vagy ennek módosulatai. A rövid válasz: semmilyet.
Kicsit hosszabban (most így saccra sok részes cikk lesz belőle):
Először is nézzük meg mi az az SSR (Solid State Relay - vagy Szilárdtest relé).
A szerkezet a mechanikus relé kiváltására született. A következő tulajdonságokkal rendelkezik:
- Galvanikusan leválasztott
- Mind a vezérelt, mind a kapcsolt oldalon kétpólus
- Széles bemenő feszültségtartomány
- A relével szemben, nincs mechanikai kopás
- Zajmentes
- A mechanikus relénél nagyságrendekkel gyorsabb
- Az AC verziói, típustól függően nullátmenten kapcsolnak
Amit most vizsgálok, az ennek a DC verziója. Első nekifutásra a filléres, mindenhol hozzáférhető darabokból indulok ki. Egy ilyet korábban szét is szedtem:
http://it-pro-hu.blogspot.com/2014/07/fotek-ssr-40dd-szetszedve.html
A Fotek ide vonatkozó szériájának az adatlapja itt található:
http://www.fotek.com.hk/solid/SSR-3.htm
(Halkan jegyzem meg, hogy nagyjából minden az eBay/Aliexpress vonalon kapható Fotek DD relé hamisítvány, ugyanakkor amit írok az az eredetire is vonatkozik az adatlapon található rajz alapján)
Itt van egy rajz ami mutatja a szerkezet belső működését:


Hogy megértsük mi ezzel a baj, vegyünk egy tipikus felhasználási próbálkozást: egy 3D nyomtató fűtött ágyának a kapcsolását. Legyen mondjuk az ágy 12V és 120W azaz 10A.
A kimenő oldalon lesz "némi" feszültségesés. Nézzük meg, hogy ez mennyi. Ha felületesen nézzük azt hihetjük, hogy a Q2 Vcesat feszültsége lesz ez a feszültségesés. Ami esetünkben mondjuk tipikus 0,8V (ok, ha más tranzisztort választunk, ez még kissebb is lehetne - akár 0,2V).
De sajnos a helyzet nem ilyen jó. Miután az áramkörben a kapcsolt oldalon a J2 1-2 pólusai közötti feszültég a maximum ami bárhol előfordulhat az áramkörben. Nézzük meg, hogy ez mennyi lehet:
1. U1 Vcesat + Q1 Vcb = 0,25V + 0,6V = 0,85V
2. Q2 Vcb + Q1 Vcesat = 0,6V + 1V = 1,6V
A fenti kettőből a nagyobb lesz a minimális feszültségesésünk. A jó Fotek relén 2V-ot mértem az ideális 1,6V helyett.
Ez a fenti összeállításban 20W veszteséget produkál. Hát nem épp ideális.
Mi ennek az alapvető oka? Az, hogy a kapcsolt oldalon a működési elvből adódóan nem áll rendelkezésünkre külön tápfeszültség. Ha rendelkeznénénk ilyennel - mint ahogy a gyakorlati problémák jelentős részénél rendelkezünk - le tudnánk menni a Q2 Vcesat feszültségéig, csökkentve a veszteséget (vagy MOSFET alkalmazásával még ennél is jobban)
Akkor most nézzük meg a bemeneti oldalt.
Azt írja a Fotek dokumentáció, hogy 3-32V feszültségről lehet használni.
A fenti kapcsolásban az R1 1,5K értékét nem az eredeti bontott eszközből vettem, hanem számoltam az adatlapból. Nézzük meg, hogy mit produkál ez 3, és mit 32V-on:
Az optocsatolóban alkalmazott LED nyitófeszültsége 1,2V.
Ez 3V-on ((3V-1,2V)/1500ohm) = 1,2mA-t jelent, 32V-on pedig ((32V-1,2V/1500)=20,5mA-t.
Ami az optocsatoló 20% minimális CTR értéke mellett azt jelenti, hogy 3V bemenő feszültségnél az optocsatoló maximális kollektor árama 6mA 0,24mA lesz. Ha az abszolult maximumokkal számolunk:
Q1 hFE = 200, Q2 hFE = 15, tehát 6mA 0,24mA x 200 x 15 = 18A 720mA. Ez a kapcsolás elméleti maximuma 3V kapcsoló feszültség esetén. De ezt biztosan nem fogjuk elérni (a Q1 betája nem lesz 200, az optocsatoló pedig nem fog 20% CTR-t produkálni).
Csak remélni tudom, hogy az optocsatoló ennél a 20%-nál jobbat produkál, mert ez így elég sovány. 
Némi konkluzió a cikk első részéhez:
Nem érdemes DC SSR-t használni, ha rendelkezésünkre áll a kapcsolt oldalon tápfeszültség, vagy nincs szükség galvanikus leválsztásra. A vezérelt oldal alacsony árama egy konstrukciós hiba az adott kapcsolásban, jobb tervezéssel kiküszöbölhető lett volna.
Folyt. köv.
A következő részben némi méréssel próbálom alátámasztani a fentieket.

Nincsenek megjegyzések:

Megjegyzés küldése

Megjegyzés: Megjegyzéseket csak a blog tagjai írhatnak a blogba.